Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị nhận hai điểm \(A\left( {0;3} \right)\) và \(B\left( {2; - 1} \rig

Câu hỏi :

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị nhận hai điểm \(A\left( {0;3} \right)\) và \(B\left( {2; - 1} \right)\) làm hai điểm cực trị. Số điểm cực trị của đồ thị hàm số \(y = \left| {a{x^2}\left| x \right| + b{x^2} + c\left| x \right| + d} \right|\) là

A. 7

B. 5

C. 9

D. 11

* Đáp án

A

* Hướng dẫn giải

Đặt \(f(x)=ax^3+bx^2+cx+d\). Hàm số có 2 điểm cực trị. Thực hiện các phép biến đổi đồ thị, suy ra các đồ thị hàm số \(y = f\left( {\left| x \right|} \right);y = \left| {f\left( x \right)} \right|\) như hình vẽ:

Dựa vào phép biến đổi đồ thị suy ra số điểm cực trị là 7

Copyright © 2021 HOCTAP247