Trong không gian Oxyz, cho 2 điểm \(A\left( { - 2;1;3} \right),B\left( {3; - 2;4} \right)\), đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y - 6}}{{11}} = \frac{{z + 1}}{{ - 4}}\) . và mặt phẳng \(\left( P \right):41x - 6y + 54z + 49 = 0\). Đường thẳng (d) đi qua B , cắt đường thẳng \(\Delta \) và mp(P) lần lượt tại C và D sao cho thể tích của 2 tứ diện ABCO và OACD bằng nhau, biết (d) có một vecto chỉ phương là \(\overrightarrow u = \left( {4;b;c} \right)\) . Tính b + c