Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz

Câu hỏi :

Cho ba tia Ox, Oy, Oz  đôi một vuông góc với nhau. Gọi C là điểm cố  định trên  Oz, đặt OC=1 các điểm A, B thay đổi trên Ox, Oy sao cho OA+OB=OC. Giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC là

A. 63

B.  6

C.  64

D. 62

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp: Sử dụng phương pháp xác định tâm mặt cầu ngoại tiếp khối chóp.

Cách giải: Đặt A(x;0;0), B(0;y;0), (x,y>0)

Vì OA+OB=OC = 1 => x+y=1

Gọi J, F lần lượt là trung điểm AB, OC. Kẻ đường thẳng qua F song song OJ, đường thẳng qua J song song OC, 2 đường thẳng này cắt nhau tại G

 Tam giác OAB vuông tại O => J là tâm đường tròn ngoại tiếp tam giác

mà F là trung điểm của OC

=>GF là đường trung trực của OC => GC=GO

=> GO=GA=GB=GC=> G là tâm mặt cầu ngoại tiếp tứ diện OABC.

Bán kính mặt cầu ngoại tiếp tứ diện OABC 

Ta có: 

Copyright © 2021 HOCTAP247