Trong mặt phẳng Oxy, cho đường thẳng d có phương trình \(x+y-1=0\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 1\). Ảnh của đường thẳng d qua phép tịnh tiến theo véc tơ \(\overrightarrow v = \left( {4;0} \right)\) cắt đường tròn (C) tại hai điểm \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\). Giá trị \({x_1} + {x_2}\) bằng: