F(x) là một nguyên hàm của hàm số \(y = x{e^{{x^2}}}.\) Hàm số nào sau đây không phải là F(x)?

Câu hỏi :

F(x) là một nguyên hàm của hàm số \(y = x{e^{{x^2}}}.\) Hàm số nào sau đây không phải là F(x)?

A. \(F\left( x \right) = \frac{1}{2}{e^{{x^2}}} + 2\)

B. \(F\left( x \right) = \frac{1}{2}\left( {{e^{{x^2}}} + 5} \right)\)

C. \(F\left( x \right) =  - \frac{1}{2}{e^{{x^2}}} + C\)

D. \(F\left( x \right) =  - \frac{1}{2}\left( {2 - {e^{{x^2}}}} \right)\)

* Đáp án

C

Copyright © 2021 HOCTAP247