Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right..

Câu hỏi :

Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 65\\
{u_1} + {u_7} = 325
\end{array} \right..\) Tính u3.

A. u3=15

B. u3=25

C. u3=10

D. u3=20

* Đáp án

D

* Hướng dẫn giải

Ta có: \(\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 65\\
{u_1} + {u_7} = 325
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{u_1} - {u_1}{q^2} + {u_1}{q^4} = 65\\
{u_1} + {u_1}.{q^6} = 325
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65(1)\\
{u_1}\left( {1 + {q^6}} \right) = 325(2)
\end{array} \right.\) 

Chia từng vế của (1) cho (2) ta được phương trình:

\(\frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{1}{5} \Leftrightarrow {q^6} - 5q{}^4 + 5{q^2} - 4 = 0(*)\) 

Đặt \(t = {q^2},t \ge 0.\) 

Phương trình (*) trở thành: \({t^3} - 5{t^2} + 5t - 4 = 0 \Leftrightarrow \left( {t - 4} \right)\left( {{t^2} - t + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
t = 4\\
{t^2} - t + 1 = 0(vn)
\end{array} \right.\) 

Với \(t = 4 \Rightarrow {q^2} = 4 \Leftrightarrow q =  \pm 2.\) 

Với \(q =  \pm 2\) thay vào (2) ta được u1 = 5.

Vậy \({u_3} = {u_1}{q^2} = 5.4 = 20.\) 

Copyright © 2021 HOCTAP247