Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, \(AB=2a\) \(AD = CD = a,SA = \sqrt 2 a,SA \bot \left( {ABCD} \right).

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, \(AB=2a\) \(AD = CD = a,SA = \sqrt 2 a,SA \bot \left( {ABCD} \right).\) Tính côsin của góc tạo bởi (SBC) và (SCD).

A. \(\frac{{\sqrt 6 }}{6}.\)

B. \(\frac{{\sqrt 6 }}{3}.\)

C. \(\frac{{\sqrt 2 }}{3}.\)

D. \(\frac{{\sqrt 3 }}{3}.\)

* Đáp án

B

* Hướng dẫn giải

Chọn hệ trục tọa độ Oxyz như hình vẽ.

Ta có: \(A\left( {0;0;0} \right),S\left( {,0,\sqrt 2 } \right),D\left( {0,1,0} \right),B\left( {2,0,0} \right),C\left( {1,1,0} \right).\) 

Vecto pháp tuyến của (SCD): \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {SC} ,\overrightarrow {SD} } \right] = \left( {0,\sqrt 2 ,1} \right).\) 

Vecto pháp tuyến của (SBC): \(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {\sqrt 2 ,\sqrt 2 ,2} \right).\) 

Vậy: \(\cos \left( {\left( {SBC} \right),\left( {SDC} \right)} \right) = \frac{{\left| {\overrightarrow {{n_1}} \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\sqrt 6 }}{3}.\) 

Copyright © 2021 HOCTAP247