Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{m{x^3}}}{3} + 7m{x^2} + 14x - m + 2\) nghịch biến tr�

Câu hỏi :

Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{m{x^3}}}{3} + 7m{x^2} + 14x - m + 2\) nghịch biến trên \(\left[ {1; + \infty } \right).\) 

A. \(\left( { - \infty ; - \frac{{14}}{{15}}} \right).\)

B. \(\left( { - \infty ; - \frac{{14}}{{15}}} \right].\)

C. \(\left[ { - 2; - \frac{{14}}{{15}}} \right]\)

D. \(\left[ { - \frac{{14}}{{15}}; + \infty } \right).\)

* Đáp án

A

* Hướng dẫn giải

Ta có: \(y' = m{x^2} + 14mx + 14.\) 

Hàm số đã cho nghịch biến trên \(\left[ {1; + \infty } \right)\) khi và chỉ khi \(y' = m{x^2} + 14mx + 14 \le 0,\forall x \in \left[ {1; + \infty } \right)\) 

\( \Leftrightarrow m\left( {{x^2} + 14} \right) \le  - 14,\forall x \in \left[ {1; + \infty } \right) \Leftrightarrow m \le \frac{{ - 14}}{{{x^2} + 14}},\forall x \in \left[ {1; + \infty } \right)\left( 1 \right).\) 

Đặt \(f\left( x \right) = \frac{{ - 14}}{{{x^2} + 14}},\forall x \in \left[ {1; + \infty } \right) \Rightarrow f'\left( x \right) = \frac{{28x}}{{{{\left( {{x^2} + 14} \right)}^2}}} > 0,\forall x \in \left[ {1; + \infty } \right).\) 

Do đó: \(\mathop {Min}\limits_{\left[ {1; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = \frac{{ - 14}}{{15}}\left( 2 \right).\) 

Từ (1), (2) suy ra giá trị m cần tìm là \(m \in \left( { - \infty ; - \frac{{14}}{{15}}} \right).\) 

Copyright © 2021 HOCTAP247