\(\lim \left( {\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}} + \frac{3}{{{n^2}}} + ... + \frac{n}{{{n^2}}}} \right)\) bằng

Câu hỏi :

\(\lim \left( {\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}} + \frac{3}{{{n^2}}} + ... + \frac{n}{{{n^2}}}} \right)\) bằng

A. 1

B. 0

C. \(\frac{1}{3}.\)

D. \(\frac{1}{2}.\)

* Đáp án

D

* Hướng dẫn giải

\(\lim \left( {\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}} + \frac{3}{{{n^2}}} + ... + \frac{n}{{{n^2}}}} \right) = \lim \left( {\frac{{1 + 2 + 3 + ... + n}}{{{n^2}}}} \right) = \lim \left( {\frac{{n(n + 1)}}{{2{n^2}}}} \right) = \lim \left( {\frac{1}{2} + \frac{1}{{2n}}} \right) = \frac{1}{2}.\)

Copyright © 2021 HOCTAP247