Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. Gọi M là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM)

A. d=3a2

B. d = a

C. d=2a3 

D. d=a3

* Đáp án

* Hướng dẫn giải

Đáp án là C

+ Gọi O là giao điểm của AC,BD

 MO \\ SB =>  SB \\ ACM

 d  (SB,ACM)= d (B,ACM) = d (D,ACM) .

+ Gọi I là trung điểm của AD ,

+ Trong ABCD: IK AC  (với K   AC ).

+ Trong MIK: IH  MK  (với H  MK )  (1) .

+ Ta có: AC  MI ,AC  IK => AC  MIK => AC  IH (2).

Từ 1 và 2 suy ra

IH  ACM  d(I ,ACM) = IH  .

+ Tính IH ?

- Trong tam giác vuông MIK. 

- Mặt khác

Vậy d(SB,(ACM))=2a3

Lời giải khác

Chọn hệ trục tọa độ như hình vẽ, trong đó:

A (0;0;0) ,B (a;0;0); D (0; a;0) ;C (a; a;0); S (0;0;2a)

Vì M là trung điểm của  SD M0;a2;a

Gọi O là giao điểm của AC , BD

 MO // SB  => SB//(ACM)

=> d(SB, (ACM))=d(B,(ACM))

Ta có:

là một VTPT của mp ( ACM ).

Vậy phương trình mặt phẳng ( ACM ): 2x-2y+z=0

=> d(SB, (ACM))=d(B,(ACM)) =2a3

Copyright © 2021 HOCTAP247