Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SAABCD SA=a. Gọi E là trung điểm của cạnh AB. Diện tích mặt cầu ngoại tiếp hình chóp bằng .SBCE

A. 14πa2

B. 11πa2

C. 8πa2

D. 12πa2

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương pháp:

Sử dụng phương pháp tọa độ hóa.

Cách giải:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a (ảnh 1)

Gắn hệ trục tọa độ như hình vẽ.

Trong đó, B2a;0;0,  C2a;2a;0,  Ea;0;0,  S0;0;a
Gọi Ix0;y0;z0 là tâm của mặt cầu ngoại tiếp hình chóp S.BEC. Khi đó, IS2=IB2=IC2=IE2
x02+y02+z0a2=x02a2+y02+z02x02+y02+z0a2=x02a2+y02a2+z02x02+y02+z0a2=x0a2+y02+z022az0+a2=4ax0+4a22az0+a2=4ax0+4a24ay0+4a22az0+a2=2ax0+a24x02z0=3a4x0+4y02z0=7ax0z0=0x0=3a2y0=az0=3a2

Bán kính mặt cầu: R=SI=x02+y02+z0a2=9a2a+a2+a24=a142 

Diện tích mặt cầu: S=4πR2=14πa2

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 1 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 456

Copyright © 2021 HOCTAP247