Cho hàm số f(x) = ax^4 + bx^2 + c với a > 0, c > 2017, a + b + c < 2017

Câu hỏi :

Cho hàm số fx=ax4+bx2+c với a>0,  c>2017,   a+b+c<2017. Số cực trị của hàm số y=fx2017 

A. 1

B. 5

C. 3

D. 7

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp:

+) Xét hàm số hx=fx2017=ax4+bx2+c2017 

+) Tìm số điểm cực trị của hàm số h(x) bằng cách giải phương trình h'(x) 

+) Xác định dấu của h0;  h1;  h1 và vẽ đồ thị hàm số y = h(x), từ đó vẽ đồ thị hàm số y=hx và kết luận.

Cách giải:

Cho hàm số f(x) = ax^4 + bx^2 + c với a > 0, c > 2017, a + b + c < 2017 (ảnh 1)

Xét hàm số hx=fx2017=ax4+bx2+c2017,

với a>0,c>2017,   a+b+c<2017 nên b < 0
Ta có: h'x=4ax3+2bx=2x2ax2+b=0x=0x2=b2a

Do a>0,b<0b2a>0 nên h'(x) = 0 có 3 nghiệm phân biệt y=hx có 3 cực trị

Ta có: h0=c2017>0,   h1=h1=a+b+c2017<0 

 h0.h1<0,   h0.h1<0

x1,x2:x11;0,   x20;1 hx1=hx2=0 

Do đó, đồ thị hàm số y = h(x) y=hx dạng như hình vẽ bên.

Vậy, số cực trị của hàm số y=fx2017 là 7

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 1 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 456

Copyright © 2021 HOCTAP247