Giả sử hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K. Khẳng định nào sau đây đúng.

Câu hỏi :

Giả sử hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K. Khẳng định nào sau đây đúng.

A. Chỉ có duy nhất một hằng số C sao cho hàm số \(y = F(x) + C\) là một nguyên hàm của hàm \(f\) trên K

B. Chỉ có duy nhất hàm số \(y=F(x)\) là nguyên hàm của \(f\) trên K

C. Với mỗi nguyên hàm G của \(f\) trên K thì tồn tại một hằng số C sao cho \[G(x) = F(x) + C\) với \(x\) thuộc K.

D. Với mỗi nguyên hàm G của \(f\) trên K thì \(G(x) = F(x) + C\) với mọi \(x\) thuộc K và C bất kỳ.

* Đáp án

C

Copyright © 2021 HOCTAP247