Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình

Câu hỏi :

Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 6x+3m2xm=0 có nghiệm thuộc khoảng (0;1).

A. [3;4]

B. [2;4]

C. (2;4)

D. (3;4)

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Phương trình 6x+3m.2xm=06x+3.2x=m2x+1=0m=3.2x+6x2x+1  *

Đặt t=2xx=log2t6x=6log2t và với x0;1t1;2.

Khi đó m=ft=3t+6log2tt+1  1

Xét hàm số fx=3t+6log2tt+1 trên 1;2,f't=3t+6log2tt.ln31+ln3t+12.t>0;t1;2

Nên hàm số f(t) là hàm số đồng biến trên (1;2). Do đó để (*) có nghiệm thuộc khoảng (0;1) khi và chỉ khi (I) có nghiệm thuộc (1;2) => f(1) < m < f(2) <=> 2 < m <4.

Vậy m2;4 là giá trị cần tìm.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 1 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 456

Copyright © 2021 HOCTAP247