Cho hàm số y= x^4 - 2(2m + 1)x^2 + 4m^2 (1) . Các giá trị của tham số m để đồ thị hàm số

Câu hỏi :

Cho hàm số y=x422m+1x2+4m2   1. Các giá trị của tham số m để đồ thị hàm số (1) cắt trục hoành tại 4 điểm phân biệt có hoành độ x1,x2,x3,x4 thoả mãn x12+x22+x32+x42=6 là:

A. m=14

B. m>12

C. m>14

D. m14

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Phương trình hoành độ giao điểm của đồ thị hàm số (1) và trục hoành là:

x422m+1x2+4m2=0   2

Đặt t=x2t0. Phương trình (2) trở thành t222m+1t+4m2=0   3

Đồ thị hàm số (1) cắt trục hoành tại 4 điểm phân biệt <=> pt (3) có 2 nghiệm dương phân biệt 0<t1<t2.

Δ'>0t1t2>0t1+t2>04m+1>04m2>022m+1>014<m0 (*).

Khi đó các nghiệm của phương trình (2) t2,t1,t1,t2. Theo giải thiết ta có t22+t12+t12+t22=6t1+t2=3.

Theo định lí Viet t1+t2=22m+122m+1=3m=14.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 1 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 456

Copyright © 2021 HOCTAP247