Cho hình chóp S.ABC có tam giác SAC, tam giác ABC là những tam giác đều cạnh bằng a và (SAC) vuông góc

Câu hỏi :

Cho hình chóp S.ABC có SAC, ABC là những tam giác đều cạnh bằng a và (SAC) (ABC). Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Giá trị của tan α bằng

A. 13.

B. 3. 

C. 12.

D. 2.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

Lấy H là trung điểm của AC và tam giác ABC, tam giác SAC đều nên ta có SH  AC, BH AC

(SAC) (ABC)

Tam giác ABC đều nên với M là trung điểm của BC thì ta có AM BC

Kẻ HI // AM (I BC) HI BC (*)

Kết hợp điều kiện SH BC (Do SH  (ABC))

Nên suy ra BC (SHI) BC SI (**)

Từ (*) và (**) nên góc giữa hai mặt phẳng (ABC) và (SBC) chính là góc SIH^ 

Xét tam giác SIH vuông tại H ta có tan(α)=tan(SIH^)=SHHI 

SH và AM là đường cao của tam giác đều có cạnh bằng a nên SH=AM=a32 

Từ đó suy ra tan(α)=a32:a34=2 

Copyright © 2021 HOCTAP247