Trong không gian tọa độ Oxyz, gọi (P) là mặt phẳng đi qua 2 điểm A(0; 1; -2), B(2; 1; 0) sao cho khoảng cách

Câu hỏi :

Trong không gian tọa độ Oxyz, gọi (P) là mặt phẳng đi qua 2 điểm A(0; 1; -2), B(2; 1; 0) sao cho khoảng cách từ gốc tọa độ O đến (P) lớn nhất. Phương trình của mặt phẳng (P) là

A. x - y - z + 3 = 0

B. x + y - z - 3 = 0

C. x - 2y - z - 3 = 0

D. 2x - y - z - 3 = 0

* Đáp án

B

* Hướng dẫn giải

Đáp án đúng là: B

Gọi phương trình mặt phẳng (P) có dạng Ax + By + Cz + D = 0

Hai điểm A(0; 1; -2), B(2; 1; 0) thuộc mặt phẳng (P) nên ta có hệ phương trình

B2C+D=02A+B+D=02A+2C=0B+D=2C 

A=CB+D=2A 

Phương trình (P) trở thành B+D2x+By+B+D2z+D=0 

Khoảng cách từ O đến (P) là dO/(P)=B+D2.0+B.0+B+D2.0+DB+D22+B2+B+D22

=|D|3B22+BD+D22 (*)

+ Với D = 0 dO/(P) = 0

+ Với D 0. Chia cả tử và mẫu của (*) cho |D| ta được

dO/(P)=13B22D2+BD+12=132t2+t+12 với t=BD 

Yêu cầu bài toán tìm t ℝ để 132t2+t+12 đạt giá trị lớn nhất

Suy ra hàm số f(t)=32t2+t+12 đạt giá trị nhỏ nhất

Bài toán thỏa mãn khi và chỉ khi t đạt tại giá trị t=b2a=12.32=13 

f13=32.132+13+12=13 

Với t=BD=13 

Chọn B = 1, D = -3 A = - C = 1

Suy ra phương trình mặt phẳng (P) là

x + y - z - 3 = 0.

Copyright © 2021 HOCTAP247