Cho phương trình log2(x+1) +mlog (căn bậc 2 (x +1) 4) = 5 với tham số m.

Câu hỏi :

Cho phương trình log2(x+1)+mlogx+14=5 với tham số m. Số giá trị nguyên dương của m để phương trình đã cho có nghiệm là

A. 4.

B. 2.

C. 3. 

D. 1. 

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Tập xác định

x+1>0x+11x>1x0x(1;+)\{0} 

log2(x+1)+mlogx+14=5 

log2(x+1)+mlog(x+1)1222=5 

log2(x+1)+2.112mlogx+12=5 

log2 (x + 1) + 4mlogx+1 2 = 5
log2(x+1)+4mlog2(x+1)=5 (*)

Đặt t = log2 (x + 1) (t Î ℝ \ {0})

Phương trình (*) trở thành

t+4mt=5 

 t2 + 4m = 5t (Nhân 2 vế với t)

t2 – 5t = –4m

Xét bảng biến thiên của f (t) = t2 – 5t = –4m trên ℝ \ {0}

Media VietJack

Dựa vào bảng biên thiên để phương trình có nghiệm thì 4m254m2516 

Số giá trị nguyên dương của m là m = {1}

Copyright © 2021 HOCTAP247