Trong mặt phẳng tọa độ Oxy, gọi A, B, C, D là 4 điểm cực trị của đồ thị hàm số y = |x|^3 - 6x^2 + 9|x| -3 với

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, gọi A, B, C, D là 4 điểm cực trị của đồ thị hàm số y=|x|36x2+9|x|3 với hoành độ đều khác 0. Bán kính đường tròn ngoại tiếp đi qua 4 điểm A, B, C, D bằng

A. 3.

B. 10. 

C. 5. 

D. 2.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Media VietJack

+ Với x > 0 y = x3 - 6x2 + 9x - 3

 (3x2 - 9x) - (3x - 9) = 0

 3x.(x - 3) - 3(x - 3) = 0

3(x - 1).(x - 3) = 0

[x1=0x3=0[x=1x=3 

Suy ra xA = 1 thì tọa độ điểm A là (1; 1)

xB = 3 thì tọa độ điểm B là (3; -3)

+ Với x < 0 y = - x3 - 6x2 - 9x - 3

 (- 3x2 - 9x) - (3x + 9) = 0

-3x.(x + 3) - 3(x + 3) = 0

-3(x + 1).(x + 3) = 0

[x+1=0x+3=0[x=1x=3 

Suy ra xC = -1 thì tọa độ điểm C là (-1; 1)

xD = 3 thì tọa độ điểm D là (-3; -3)

d là trục đối xứng của hình thang cân ABDC nên với mọi điểm nằm trên d luôn cách đều hai điểm A, C và hai điểm B, D (*)

Suy ra d là đường trung trực của hai đoạn thẳng AC và BD, cắt AC tại M

M là trung điểm của AC nên ta có tọa độ điểm M là M(xM; yM) với

 xM=xA+xC2=112=0yM=yA+yC2=1+12=1 Þ M(0; 1)

Kẻ đường thẳng s là đường trung trực của đoạn thẳng CD, cắt CD và d lần lượt tại N và I

Suy ra với mọi điểm trên s thì cách đều hai điểm C và D (**)

N là trung điểm của CD nên tương tự ta có tọa độ điểm N là N(-2; -1)

Từ (*) và (**) suy ra I là tâm đường tròn ngoại tiếp hình thang cân ABDC

Đường thẳng d đi qua M(0; 1) và có vectơ pháp tuyến là CA=(2;0) có phương trình (d): 2x = 0

I(0; yI)

Đường thẳng s đi qua N(-2; -1) và có vectơ pháp tuyến là DC=(2;4) có phương trình

2(x + 2) + 4(y+1) = 0

2x + 4 + 4y + 4 = 0

2x + 4y + 8 = 0

x + 2y + 4 = 0

Từ đây suy ra xI + 2yI + 4 = 0 Û yI = -2

Suy ra tọa độ điểm I là I(0; -2)

Vậy bán kính đường tròn ngoại tiếp ABDC là

IA=(xAxI)2+(yAyI)2 

=12+(1+1)2=5 

Copyright © 2021 HOCTAP247