Cho hàm số f (x) có đạo hàm liên tục trên đoạn [0; 1] thỏa mãn

Câu hỏi :

Cho hàm số f (x) có đạo hàm liên tục trên đoạn [0; 1] thỏa mãn 01f'(x)2dx=01(x+1)exf(x)dx=e214và f (1) = 0. Tính 01f(x)dx.

A. e12.

B. e24. 

C. e – 2

D. e2.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

01(x+1)exf(x)dx 

Ta có: u=f(x)du=f'(x)dxdv=(x+1).exdxv=x.ex 

 01(x+1)exf(x)dx =x.ex.f(x)0101x.ex.f'(x)dx=e214 

01x.ex.f'(x)dx=e214=01f'(x)2dx 

f'(x)=x.ex 

f(x)=f'(x)dx=(1x).ex+C 

Với f (1) = 0 Þ C = 0 Þ f (x) = (1 – x).ex 

01f(x)dx=01(1x).exdx 

=(2x).ex01=e2 

Copyright © 2021 HOCTAP247