Cho hàm số f(x) liên tục trên R thỏa mãn tích phân từ 0 đến 1 f(x)dx và tích phân từ 0 đến 2 f(3x+1)dx=6.

Câu hỏi :

Cho hàm số f(x) liên tục trên R thỏa mãn 01f(x)dx=2 02f(3x+1)dx=6. Tính I = 07f(x)dx

* Đáp án

* Hướng dẫn giải

A = 01f(x)dx=2 , B = 02f(3x+1)dx=6

Đặt t = 3x +1 Û dt = 3dx

Đổi cận:
Cho hàm số f(x) liên tục trên R thỏa mãn tích phân từ 0 đến 1 f(x)dx và tích phân từ 0 đến 2 f(3x+1)dx=6.  (ảnh 1)

Ta có : B = 1317f(t)dt=6=>17f(t)dt=18

Vậy I = 07f(x)dx=01f(x)dx+17f(x)dx=20

Copyright © 2021 HOCTAP247