Gọi \({x_1},{x_2}\)  là hai điểm cực trị của hàm số \(f(x) = \frac{1}{3}{x^3} - 3{x^2} - 2x\).

Câu hỏi :

Gọi \({x_1},{x_2}\)  là hai điểm cực trị của hàm số \(f(x) = \frac{1}{3}{x^3} - 3{x^2} - 2x\). Giá trị của \(x_1^2 + x_2^2\) bằng:

A. 13

B. 32

C. 4

D. 36

* Đáp án

C

* Hướng dẫn giải

Ta có: \(f'\left( x \right) = {x^2} - 6x - 2 \Rightarrow f'\left( x \right) = 0 \Leftrightarrow {x^2} - 6x - 2 = 0\) (*)

Có x1; x2 là hai điểm cực trị của đồ thị hàm số \(y = f(x) \Rightarrow {x_1},{x_2}\) là hai nghiệm của phương trình (*).

Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}
{x_1} + {x_2} = 6\\
{x_1}{x_2} =  - 2
\end{array} \right.\)

\( \Rightarrow x_1^2 + x_2^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2} = {6^2} - 2.( - 2) = 40\)

 

Copyright © 2021 HOCTAP247