A. 13
B. 15
C. 16
D. 14
D
Sử dụng công thức trả góp \(P{\left( {1 + r} \right)^n} = \frac{M}{r}\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]\), trong đó:
P: Số tiền phải trả sau n tháng.
r: lãi suất/ tháng
M: Số tiền trả mỗi tháng.
\(\begin{array}{l}
P{\left( {1 + r} \right)^n} = \frac{M}{r}\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]\\
\Leftrightarrow 50{\left( {1 + 1,1\% } \right)^n} = \frac{4}{{1,1\% }}\left[ {{{\left( {1 + 1,1\% } \right)}^n} - 1} \right]\\
\Leftrightarrow 50{\left( {1 + 1,1\% } \right)^n} = \frac{4}{{1,1\% }}{\left( {1 + 1,1\% } \right)^n} - \frac{4}{{1,1\% }}\\
\Leftrightarrow \frac{4}{{1,1\% }} = \frac{{3450}}{{11}}{\left( {1 + 1,1\% } \right)^n}\\
\Leftrightarrow {\left( {1 + 1,1\% } \right)^n} = \frac{{80}}{{69}} \Rightarrow n = {\log _{1 + 1,1\% }}\frac{{80}}{{69}} \approx 13,52
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247