A. \(\frac{3}{5}\)
B. \(\frac{6}{{13}}\)
C. \(\frac{7}{9}\)
D. \(\frac{1}{2}\)
B
Thiết diện qua trục của hình nón là một tam giác đều cạnh l.
Do đó bán kính đường tròn nội tiếp tam giác cũng chính là bán kính mặt cầu nội tiếp chóp là \({r_1} = \frac{1}{3}\frac{{l\sqrt 3 }}{2} = \frac{{l\sqrt 3 }}{6}\).
Áp dụng định lí Ta-lét ta có:
\(\frac{{AA'}}{{AB}} = \frac{{AH'}}{{AH}} = \frac{{AH - HH'}}{{AH}} = \frac{{\frac{{l\sqrt 3 }}{2} - \frac{{l\sqrt 3 }}{3}}}{{\frac{{l\sqrt 3 }}{2}}} = \frac{1}{3} \Rightarrow AA' = \frac{l}{3}\)
Tương tự ta tìm được \({r_2} = \frac{l}{3}.\frac{{\sqrt 3 }}{6} = \frac{{l\sqrt 3 }}{{18}} = \frac{{{r_1}}}{3}\). Tiếp tục như vậy ta có \({r_3} = \frac{{{r_1}}}{{{3^2}}},{r_4} = \frac{{{r_1}}}{{{3^3}}},...{r_n} = \frac{{{r_1}}}{{{3^{n - 1}}}}\).
Ta có: \({V_1} = \frac{4}{3}\pi r_1^3,{V_2} = \frac{4}{3}\pi r_2^3 = \frac{4}{3}\pi r_2^3 = \frac{4}{3}\pi {\left( {\frac{{{r_1}}}{3}} \right)^3} = \frac{1}{{{3^3}}}{V_1},{V_3} = \frac{1}{{{{\left( {{3^3}} \right)}^2}}}{V_1},...;{V_n} = \frac{1}{{{{\left( {{3^3}} \right)}^{n - 1}}}}{V_1}\)
\( \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \frac{{{V_1} + {V_2} + ... + {V_n}}}{V} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{V_1}\left( {1 + \frac{1}{{{3^3}}} + \frac{1}{{{{\left( {{3^3}} \right)}^2}}} + ... + \frac{1}{{{{\left( {{3^3}} \right)}^{n - 1}}}}} \right)}}{V} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{V_1}.S}}{V}\)
Đặt \(S = 1 + \frac{1}{{{3^3}}} + \frac{1}{{{{\left( {{3^3}} \right)}^2}}} + ... + \frac{1}{{{{\left( {{3^3}} \right)}^{n - 1}}}}\).
Đây là tổng của CSN lùi vô hạn với công bội \(q = \frac{1}{{{3^3}}} < 1 \Rightarrow \mathop {\lim }\limits_{n \to + \infty } S = \frac{1}{{1 - \frac{1}{{{3^3}}}}} = \frac{{27}}{{26}}\)
\(\begin{array}{l}
\Rightarrow {V_1} + {V_2} + ... + {V_n} = \frac{{27}}{{26}}{V_1} = \frac{{27}}{{26}}.\frac{4}{3}\pi {\left( {\frac{{l\sqrt 3 }}{6}} \right)^3} = \frac{{\sqrt 3 }}{{52}}\pi {l^3}\\
V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {\left( {\frac{l}{2}} \right)^2}.\frac{{l\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi {l^3}}}{{24}}\\
\Rightarrow T = \frac{{\frac{{\sqrt 3 }}{{52}}\pi {l^3}}}{{\frac{{\sqrt 3 \pi {l^3}}}{{24}}}} = \frac{6}{{13}}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247