Trên một mảnh đất hình vuông có diện tích 81 m2 người ta đào một cái ao nuôi cá hình trụ (như hình vẽ) sao cho tâm c�

Câu hỏi :

Trên một mảnh đất hình vuông có diện tích 81 m2 người ta đào một cái ao nuôi cá hình trụ (như hình vẽ) sao cho tâm của hình tròn đáy trùng với tâm của mảnh đất. Ở giữa mép ao và mép mảnh đất người ta để lại một khoảng đất trống để đi lại, biết khoảng cách nhỏ nhất giữa mép ao và mép mảnh đất là x (m). Giả sử chiều sâu của ao cũng là x (m). Tính thể tích lớn nhất V của ao.

A. \(V = 13,5\pi \left( {{m^3}} \right)\)

B. \(V = 27\pi \left( {{m^3}} \right)\)

C. \(V = 36\pi \left( {{m^3}} \right)\)

D. \(V = 72\pi \left( {{m^3}} \right)\)

* Đáp án

A

* Hướng dẫn giải

Ta có: Đường kính đáy của hình trụ là \(9 - 2x \Rightarrow \) Bán kính đáy hình trụ là \(\frac{{9 - 2x}}{2}\).

Khi đó ta có thể tích ao là \(V = \pi {\left( {\frac{{9 - 2x}}{2}} \right)^2}x = \frac{\pi }{4}{\left( {9 - 2x} \right)^2}x = \frac{\pi }{4}f\left( x \right)\) 

Xét hàm số \(f\left( x \right) = {\left( {9 - 2x} \right)^2}x = 4{x^3} - 36{x^2} + 81x\) với \(0 < x < \frac{9}{2}\) ta có:

\(f'\left( x \right) = 12{x^2} - 72x + 81 = 0 \Leftrightarrow \left[ \begin{array}{l}
x = \frac{9}{2}\\
x = \frac{3}{2}
\end{array} \right.\) 

BBT:

Dựa vào BBT ta thấy \(f{\left( x \right)_{\max }} = 54 \Leftrightarrow x = \frac{3}{2}\). Khi đó \({V_{\max }} = \frac{\pi }{4}.54 = \frac{{27\pi }}{2} = 13,5\pi \left( {{m^3}} \right)\).

Copyright © 2021 HOCTAP247