Cho hàm số \(y = \frac{1}{2}{x^2}\) có đồ thị (P).

Câu hỏi :

Cho hàm số \(y = \frac{1}{2}{x^2}\) có đồ thị (P). Xét các điểm A, B thuộc (P) sao cho tiếp tuyến tại A và B của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng 9/4 . Gọi \({x_1},{x_2}\)  lần lượt là hoành độ của A và B. Giá trị của \({\left( {{x_1} + {x_2}} \right)^2}\) bằng:

A. 7

B. 5

C. 13

D. 11

* Đáp án

B

* Hướng dẫn giải

\((P):y = \frac{1}{2}{x^2}\)

TXĐ: D = R. Ta có y’ = x

Giả sử \(A\left( {{x_1};\frac{1}{2}x_1^2} \right);B\left( {{x_2};\frac{1}{2}x_2^2} \right) \in (P)({x_1} \ne {x_2})\)

Phương trình tiếp tuyến tại điểm A của (P) là \(y = {x_1}(x - {x_1}) + \frac{1}{2}x_1^2 \Leftrightarrow y = {x_1}x - \frac{1}{2}x_1^2({d_1})\)

Phương trình tiếp tuyến tại điểm B của (P) là  \(y = {x_2}(x - {x_2}) + \frac{1}{2}x_2^2 \Leftrightarrow y = {x_2}x - \frac{1}{2}x_2^2({d_1})\)

Do \(({d_1}) \bot ({d_2})\) nên ta có  \({x_1}{x_2} =  - 1 \Leftrightarrow {x_2} = \frac{{ - 1}}{{{x_1}}}\)

Phương trình đường thẳng AB:

\(\begin{array}{l}
\frac{{x - {x_1}}}{{{x_2} - {x_1}}} = \frac{{y - \frac{1}{2}x_1^2}}{{\frac{1}{2}x_2^2 - \frac{1}{2}x_1^2}} \Leftrightarrow \frac{1}{2}\left( {x - {x_1}} \right)\left( {x_2^2 - x_1^2} \right) = \left( {y - \frac{1}{2}x_1^2} \right)\left( {{x_2} - {x_1}} \right)\\
 \Leftrightarrow (x - {x_1})({x_2} + {x_1}) = 2y - x_1^2 \Leftrightarrow ({x_1} + {x_2})x - 2y - {x_1}{x_2} = 0\\
 \Leftrightarrow y = \frac{1}{2}\left[ {\left( {{x_1} + {x_2}} \right)x - {x_1}{x_2}} \right] = \frac{1}{2}\left[ {\left( {{x_1} + {x_2}} \right)x + 1} \right]
\end{array}\)

Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

\(\begin{array}{l}
S = \frac{1}{2}\int\limits_{{x_1}}^{{x_2}} {\left( {\left( {{x_1} + {x_2}} \right)x + 1 - {x^2}} \right)dx} \\
 \Leftrightarrow \frac{9}{4} = \frac{1}{2}\left( {\left( {{x_1} + {x_2}} \right)\frac{{{x^2}}}{2} + x - \frac{{{x^3}}}{3}} \right)\left| {_{{x_1}}^{{x_2}}} \right.\\
 \Leftrightarrow \frac{9}{4} = \frac{1}{2}\left[ {\left( {{x_1} + {x_2}} \right)\left( {\frac{{x_2^2}}{2} - \frac{{x_1^2}}{2}} \right) + \left( {{x_2} - {x_1}} \right) - \frac{{x_2^3 - x_1^3}}{3}} \right]\\
 \Leftrightarrow \frac{9}{4} = \frac{1}{2}\left( {{x_1} + {x_2}} \right)\left( {x_2^2 - x_1^2} \right) + ({x_2} - {x_1}) - \frac{{x_2^3 - x_1^3}}{3}\\
 \Leftrightarrow 27 = 3\left( {{x_1}x_2^2 - x_1^3 + x_2^3 - x_1^2{x_2}} \right) + 6\left( {{x_2} - {x_1}} \right) - 2x_2^3 + 2x_1^3\\
 \Leftrightarrow 27 = 3{x_1}x_2^2 - 3{x_1}x_2^2 + x_2^3 - x_1^3 + 6({x_2} - {x_1})\\
 \Leftrightarrow 27 =  - 3({x_2} - {x_1}) + ({x_2} - {x_1})\left( {x_1^2 + x_2^2 - 1} \right) + 6({x_2} - {x_1})\\
 \Leftrightarrow 27 = 3({x_2} - {x_1}) + ({x_2} - {x_1})\left( {x_1^2 + x_2^2 - 1} \right)\\
 \Leftrightarrow 27 = ({x_2} - {x_1})\left( {x_1^2 + x_2^2 + 2} \right)\\
 \Leftrightarrow 27 = ({x_2} - {x_1})\left( {x_1^2 + x_2^2 - 2{x_1}{x_2}} \right)\\
 \Leftrightarrow 27 = ({x_2} - {x_1}){({x_2} - {x_1})^2} = {({x_2} - {x_1})^3}\\
 \Leftrightarrow {x_2} - {x_1} = 3
\end{array}\)

Thay \({x_2} = \frac{{ - 1}}{{{x_1}}}\) ta có:

\(\frac{{ - 1}}{{{x_1}}} - {x_1} = 3 \Leftrightarrow  - 1 - x_1^2 - 3{x_1} = 0 \Leftrightarrow \left[ \begin{array}{l}
{x_1} = \frac{{ - 3 - \sqrt 5 }}{2} \Rightarrow {x_2} = \frac{2}{{3 + \sqrt 5 }}\\
{x_1} = \frac{{ - 3 + \sqrt 5 }}{2} \Rightarrow {x_2} = \frac{{ - 2}}{{ - 3 + \sqrt 5 }}
\end{array} \right. \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} = 5\)

 

Copyright © 2021 HOCTAP247