A. 2019
B. 2018
C. 4037
D. 4038
D
Ta có \({2^x} + {2^{ - x}} = 4 + 2cos(\alpha x) \Leftrightarrow {\left( {{2^{\frac{x}{2}}} - {2^{ - \frac{x}{2}}}} \right)^2} = 4co{s^2}\frac{{\alpha x}}{2} \Leftrightarrow \left[ \begin{array}{l}
{2^{\frac{x}{2}}} - {2^{ - \frac{x}{2}}} = 2cos\frac{{\alpha x}}{2}(1)\\
{2^{\frac{x}{2}}} - {2^{ - \frac{x}{2}}} = - 2cos\frac{{\alpha x}}{2}(2)
\end{array} \right.\)
Thay vào phương trình (1) ta có \({2^0} - {2^0} = 2cos0 \Leftrightarrow 0 = 1\) (Vô lí), kết hợp với giả thiết ta có phương trình (1) có 2019 nghiệm thực khác 0.
Với x0 là nghiệm của phương trình (1)
\( \Leftrightarrow {2^{\frac{{{x_0}}}{2}}} - {2^{ - \frac{{{x_0}}}{2}}} = 2cos\frac{{\alpha {x_0}}}{2} \Leftrightarrow {2^{\frac{{( - {x_0})}}{2}}} - {2^{\frac{{ - ( - {x_0})}}{2}}} = - 2cos\frac{{\alpha ( - {x_0})}}{2} \Rightarrow - {x_0}\) là nghiệm của phương trình (2)
Thay \(x = - {x_0}\) vào phương trình (1) ta có:
\( \Leftrightarrow {2^{ - \frac{{{x_0}}}{2}}} - {2^{\frac{{{x_0}}}{2}}} = 2cos\frac{{\alpha ( - {x_0})}}{2} = 2cos\frac{{\alpha {x_0}}}{2} = {2^{\frac{{{x_0}}}{2}}} - {2^{\frac{{ - {x_0}}}{2}}}\)
\( \Leftrightarrow {2.2^{\frac{{{x_0}}}{2}}} = {2.2^{\frac{{ - {x_0}}}{2}}} \Leftrightarrow {2^{\frac{{{x_0}}}{2} + 1}} = {2^{\frac{{ - {x_0}}}{2} + 1}} \Leftrightarrow \frac{{{x_0}}}{1} + 1 = - \frac{{{x_0}}}{1} + 1 \Leftrightarrow {x_0} = 0\) (vô lí do \({x_0} \ne 0\) )
\( \Rightarrow - {x_0}\) không là nghiệm của phương trình (1), điều đó đảm bảo mọi nghiệm của phương trình (2) không trùng với nghiệm của phương trình (1).
Do đó phương trình (2) cũng có 2019 nghiệm.
Vậy phương trình ban đầu có 2019.2 = 4038 nghiệm
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247