Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB=2a, AD=BC=CD=a

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB = 2a,AD = BC = CD = a mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng , tính theo a thể tích V của khối chóp 

A. \(V = \frac{{3{a^3}\sqrt 3 }}{4}\)

B. \(V = \frac{{3{a^3}}}{4}\)

C. \(V = \frac{{3{a^3}\sqrt 5 }}{4}\)

D. \(V = \frac{{3{a^3}\sqrt 2 }}{8}\)

* Đáp án

B

* Hướng dẫn giải

Gọi O, I là trung điểm của AB, BC; H là hình chiếu vuông góc của O lên SI.

Tam giác SAB cân tại S  \( \Rightarrow SO \bot AB\)

Ta có: \(\left\{ {\begin{array}{*{20}{c}}
{\left( {SAB} \right) \bot \left( {ABCD} \right)\,\,\,\,\,\,\,\,\,\,\,\,}\\
{\left( {SAB} \right) \cap \left( {ABCD} \right) = AB}\\
{SO \subset \left( {SAB} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\
{SO \bot AB\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right. \Rightarrow SO \bot \left( {ABCD} \right)\)

ABCD là hình thang cân với đáy \(AB = 2a,AD = BC = CD = a \Rightarrow \Delta OAD,\Delta OCD,\Delta OBC\)  đều là các tam giác đều, cạnh a   \( \Rightarrow {S_{ABCD}} = 3.{S_{OBC}} = 3.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3{a^2}\sqrt 3 }}{4}\)

\(\Delta OBC\) đều, I là trung điểm của BC \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{OI \bot BC}\\
{OI = \frac{{a\sqrt 3 }}{2}}
\end{array}} \right.\)

Mà \(BC \bot SO\) (do \(SO \bot \left( {ABCD} \right)\) )

\( \Rightarrow BC \bot \left( {SOI} \right) =  > BC \bot OH\)

Lại có: \(SI \bot OH =  > OH \bot \left( {SBC} \right) =  > d\left( {O;\left( {SBC} \right)} \right) = OH\)  (2)

Từ (1), (2) suy ra: 

\(d\left( {A;\left( {SBC} \right)} \right) = 2.OH = \frac{{2a\sqrt {15} }}{5} =  > OH = \frac{{a\sqrt {15} }}{5}\)

\(\Delta SOI\) vuông tại O

\(OH \bot SI =  > \frac{1}{{S{O^2}}} + \frac{1}{{O{I^2}}} = \frac{1}{{O{H^2}}} \Leftrightarrow \frac{1}{{S{O^2}}} + \frac{1}{{\frac{3}{4}{a^2}}} = \frac{1}{{\frac{3}{5}{a^2}}} \Leftrightarrow SO = a\sqrt 3 \)

Thể tích khối chóp S.ABCD là: \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.a\sqrt 3 .\frac{{3{a^2}\sqrt 3 }}{4} = \frac{{3{a^2}}}{4}\)

 

Copyright © 2021 HOCTAP247