Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy (ABCD).

Câu hỏi :

Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S.ABCD

A. \(8\pi {a^2}\)

B. \({a^2}\sqrt 2 \)

C. \(2\pi {a^2}\)

D. \(2a^2\)

* Đáp án

A

* Hướng dẫn giải

Bán kính đường tròn ngoại tiếp hình vuông ABCD cạnh a: \(R = \frac{{a\sqrt 2 }}{2}\) 

Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp \(R = \sqrt {\frac{{{h^2}}}{4} + R_{day}^2}  = \sqrt {{{\left( {\frac{{a\sqrt 6 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = a\sqrt 2 \)

Vậy diện tích mặt cầu là \(S = 4\pi {R^2} = 4\pi {\left( {a\sqrt 2 } \right)^2} = 8\pi {a^2}\) 

Copyright © 2021 HOCTAP247