Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.

Câu hỏi :

Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc tọa độ O, các đỉnh B(a;0;0), D(0;a;0), A'(0;0;b) với a, b > 0 và a + b = 2. Gọi M là trung điểm của cạnh CC'.Thể tích của khối tứ diện BDA'M có giá trị lớn nhất bằng

A. \(\frac{{64}}{{27}}\)

B. \(\frac{{32}}{{27}}\)

C. \(\frac{{8}}{{27}}\)

D. \(\frac{{4}}{{27}}\)

* Đáp án

C

* Hướng dẫn giải

Tọa độ điểm \(C\left( {a;a;0} \right),C'\left( {a;a;b} \right),M\left( {a;a;\frac{b}{2}} \right);\overrightarrow {BA}  = \left( { - a;a;0} \right),\overrightarrow {BM}  = \left( {0;a;\frac{b}{2}} \right)\)

\(\left[ {\overrightarrow {BA'} ,\overrightarrow {BD} } \right] = \left( { - ab; - ab; - {b^2}} \right)\) nên \({V_{BDA'M}} = \frac{1}{6}\left| {\left[ {\overrightarrow {BA'} ,\overrightarrow {BD} } \right].\overrightarrow {BM} } \right| = \frac{{{a^2}b}}{4}\)

Ta có \(a.a.\left( {2b} \right) \le {\left( {\frac{{a + a + 2b}}{3}} \right)^3} = \frac{{64}}{{27}} \Rightarrow {a^2}b \le \frac{{32}}{{27}} \Rightarrow {V_{BDA'M}} \le \frac{8}{{27}}\)

Copyright © 2021 HOCTAP247