Trong không gian Oxyz, cho hai điểm M (2; 1; 0) và N (4; 3; 2). Gọi (P) là mặt phẳng trung trực của MN

Câu hỏi :

Trong không gian Oxyz, cho hai điểm M (2; 1; 0) và N (4; 3; 2). Gọi (P) là mặt phẳng trung trực của MN, phương trình của mặt phẳng (P) là


A. x + y + z + 6 = 0.



B. 2x + y + z − 6 = 0.


C. x + y − z − 6 = 0.

D. x + y + z − 6 = 0.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Mặt phẳng (P) là mặt phẳng trung trực của MN nên vectơ pháp tuyến của mặt phẳng (P) là vectơ MN

Với M (2; 1; 0) và N (4; 3; 2) ta có:

MN= (2; 2; 2)

Þ MN = (1; 1; 1)

Gọi I là trung điểm của đoạn MN nên tọa độ điểm I là:

xI = xM+xN2 = 2+42= 3

yI = yM+yN2 = 1+32= 2

zI = zM+zN2= 0+22= 1

Vậy tọa độ điểm I là I(3; 2; 1)

Mặt phẳng (P) là mặt phẳng trung trực của MN nên mặt phẳng (P) đi qua điểm I(3; 2; 1)

Mặt phẳng (P) có VTPT là n(P)= (1; 1; 1) và đi qua điểm I(3; 2; 1) nên phương trình mặt phẳng (P) là:

1. (x − 3) + 1. (y − 2) + 1. (z − 1) = 0

Û x + y + z − 6 = 0.

Vậy phương trình mặt phẳng (P) là: x + y + z − 6 = 0.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247