Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc \(\widehat {ABC} = 60^\circ \), cạnh bên SA = a và vuông góc với mặt đáy. Tính bán kính R của mặt cầu ngoại tiếp tứ diện...

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc \(\widehat {ABC} = 60^\circ \), cạnh bên SA = a và vuông góc với mặt đáy. Tính bán kính R của mặt cầu ngoại tiếp tứ diện S.ACD

A. \(R = \frac{{a\sqrt 5 }}{2}\)

B. \(R=a\)

C. \(R = a\sqrt {\frac{7}{{12}}} \)

D. \(R = \frac{a}{2}\)

* Đáp án

C

* Hướng dẫn giải

Ta có \(\widehat {ADC} = \widehat {ABC} = 60^\circ \), suy ra tam giác ADC là tam giác đều cạnh a. Gọi N là trung điểm cạnh DC, G là trọng tâm của tam giác ABC. Ta có \(AN = \frac{{a\sqrt 3 }}{2};AG = \frac{{a\sqrt 3 }}{3}\)

Trong mặt phẳng (SAN), kẻ đường thẳng Gx // SA, suy ra Gx là trục của tam giác ADC.

Gọi M là trung điểm cạnh SA. Trong mặt phẳng (SAN) kẻ trung trực của SA cắt Gx tại I thì \(IS = IA = ID = IC\) nên I chính là tâm mặt cầu ngoại tiếp tứ diện S.ACD. Bán kính R của mặt cầu bằng độ dài đoạn IA.

Trong tam giác AIG vuông tại G, ta có:

\(IA = \sqrt {I{G^2} + G{A^2}}  = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = a\sqrt {\frac{7}{{12}}} \) 

Copyright © 2021 HOCTAP247