A. \(\frac{1}{{{e^2}}}\)
B. \(e^3\)
C. \(\frac{1}{{{e^3}}}\)
D. 1
A. P = 251
B. P = 22
C. P = 21
D. P = 252
A. 2
B. - 3
C. 3
D. 0
A. \(d = \frac{{a\sqrt {10} }}{5}\)
B. \(d = \frac{{2\sqrt 2 a}}{5}\)
C. \(d = \frac{{\sqrt 3 a}}{5}\)
D. \(d = \frac{{2a\sqrt 5 }}{5}\)
A. 0
B. 2
C. 1
D. 3
A. \(a < 1 < c < b\)
B. \(1 < a < c < b\)
C. \(1 < a < b < c\)
D. \(a < 1 < b < c\)
A. D = [1;2]
B. D = (1;2)
C. D = [1;2)
D. D = (1;2]
A. \(D = R\backslash \left\{ {\sqrt 3 } \right\}\)
B. \(D = R\backslash \left\{ {\sqrt 3 ; - \sqrt 3 } \right\}\)
C. D = R
D. \(D = \left( { - \infty ; - \sqrt 3 } \right) \cup \left( {\sqrt 3 ; + \infty } \right)\)
A. \(P = \sqrt x \)
B. \(P = \sqrt[3]{{{x^2}}}\)
C. \({x^{ - \frac{2}{3}}}\)
D. \({x^{ - \frac{1}{3}}}\)
A. \(R = \frac{{a\sqrt 5 }}{2}\)
B. \(R=a\)
C. \(R = a\sqrt {\frac{7}{{12}}} \)
D. \(R = \frac{a}{2}\)
A. \(R = \frac{{a\sqrt 2 }}{3}\)
B. \(R = \frac{{a\sqrt 6 }}{2}\)
C. \(R = \frac{{a\sqrt 3 }}{3}\)
D. \(R = \frac{{a\sqrt 6 }}{3}\)
A. \(x = - \frac{3}{4}\)
B. \(x = \frac{1}{4}\)
C. \(x = - \frac{1}{4}\)
D. \(x=-1\)
A. \(V = \frac{{{a^3}\sqrt 3 }}{{24}}\)
B. \(V = \frac{{{a^3}\sqrt 3 }}{{12}}\)
C. \(V = \frac{{{a^3}}}{{12}}\)
D. \(V = \frac{{{a^3}\sqrt 3 }}{{3}}\)
A. \(y = \frac{{x - 1}}{{2x + 1}}\)
B. \(y = \frac{{2x + 1}}{{x - 2}}\)
C. \(y = \frac{{x + 3}}{{2 + x}}\)
D. \(y = \frac{{x + 1}}{{x - 2}}\)
A. \(y = - {x^4} + 2{x^2} - 3\)
B. \(y = {x^4} + 2{x^2}\)
C. \(y = {x^4} - 2{x^2} - 3\)
D. \(y = {x^4} - 2{x^2}\)
A. 0
B. 1
C. 3
D. 2
A. 6
B. 4
C. 9
D. 3
A. \(y = {x^3} + 2\)
B. \(y = {x^4} - {x^2} + 1\)
C. \(y = {x^3} - 3{x^2} + 3\)
D. \(y = - {x^4} + 3\)
A. \(\frac{{{a^3}}}{3}\)
B. \(3\sqrt 3 {a^3}\)
C. \(\frac{{3\sqrt 6 {a^3}}}{4}\)
D. \(a^3\)
A. \(75^0\)
B. \(60^0\)
C. \(45^0\)
D. \(90^0\)
A. \(\left( {3; + \infty } \right)\)
B. \(\left( {0; + \infty } \right)\)
C. \(\left( { - \infty ; - 3} \right)\)
D. \(\left( { - \infty ; 0} \right)\)
A. \({\log _a}\frac{b}{c} = {\log _a}b - {\log _a}c\)
B. \({\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\)
C. \({\log _a}c = c \Leftrightarrow b = {a^c}\)
D. \({\log _a}\left( {b + c} \right) = {\log _a}b + {\log _a}c\)
A. \(\frac{1}{4}\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{2}\)
D. \(\frac{2}{3}\)
A. \(m<-2\)
B. \(m>-2\)
C. \(m \le - 2\)
D. \( - 2 < m \le 1\)
A. \(2\pi {a^2}\)
B. \(4\pi {a^2}\)
C. \(5\pi {a^2}\)
D. \(3\pi {a^2}\)
A. \(m \le \frac{1}{4}\)
B. \(m \le 1\)
C. \(m \ge \frac{1}{4}\)
D. \(m \ge 1\)
A. \(\frac{{13 + \sqrt {87} }}{2}\)
B. \(\frac{{11 + \sqrt {87} }}{2}\)
C. \(\frac{{7 + \sqrt {37} }}{2}\)
D. \(\frac{{9+ \sqrt {87} }}{2}\)
A. \(y' = \frac{{2x\ln 4}}{{{x^2} + 2}}\)
B. \(y' = \frac{1}{{\left( {{x^2} + 2} \right)\ln 4}}\)
C. \(y' = \frac{x}{{\left( {{x^2} + 2} \right)\ln 2}}\)
D. \(y' = \frac{{2x}}{{{x^2} + 2}}\)
A. \( - 3 < m < - 1\)
B. \( - 1 < m < - \frac{3}{4}\)
C. \( - 1 < m < 0\)
D. \(m \ge - 3\)
A. \(\frac{{a\sqrt 3 }}{2}\)
B. \(a\sqrt 3 \)
C. \(a\)
D. \(\frac{{a\sqrt 7 }}{2}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247