Hàm số y = f (x) có đạo hàm liên tục trên ℝ thỏa mãn f (1) = 1; f (2) = 4.

Câu hỏi :

Hàm số y = f (x) có đạo hàm liên tục trên ℝ thỏa mãn f (1) = 1; f (2) = 4. Tích phân J=12f'x+2xfx+1x2dx  bằng


A. J = 4 - ln 2;


B. J=ln212;

C. J=12+ln4;


D. J = 1 + ln 4.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

J=12f'x+2xfx+1x2dx

=12f'xxfx+1x2dx+122xdx

Đặt g (x) = f (x) + 1 Þ g '(x) = f '(x)

hx=1xh'x=1x2

Vậy khi đó

J=12g'xhx+gxh'xdx+122xdx

=gxhx12+2lnx12

=fx+1x12+2lnx12

=f2+12f1+11+2ln2

=4+121+11+2ln2

=12+ln4.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247