Cho hàm số y = f(x) là hàm liên tục có tích phân trên [0; 2] thỏa mãn điều kiện

Câu hỏi :

Cho hàm số y = f(x) là hàm liên tục có tích phân trên [0; 2] thỏa mãn điều kiện f(x2) = 6x4 + 02xf(x)dx. Tính I = 02f(x)dx  


A. I = −8



B. I = −24


C. I = −32

D. I = −6

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

Đặt 02xf(x)dx = m Û f(x2) = 6x4 + m Þ f(x) = 6x2 + m

Do đó ta được: 02x(6x2+m)dx = m

Û 6x44+mx2202 = m Û 24 + 2m = m Û m = −12

Nên I = 02f(x)dx = 02(6x212)dx = −8

Vậy I = −8.

 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247