Cho hàm số y = f (x) có đạo hàm là f '(x) = 12x^2 + 2, với mọi x thuộc ℝ và f (-1) = 3.

Câu hỏi :

Cho hàm số y = f (x) có đạo hàm là f '(x) = 12x2 + 2, "x Îvà f (-1) = 3. Biết F (x) là nguyên hàm của f (x) thỏa mãn F (-2) = 2, khi đó F (1) bằng


A. 15;



B. 11;


C. 6;

D. 1.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

f (x) là một nguyên hàm của f '(x)

fx=f'xdx=12x2+2dx

= 4x3 + 2x + C

Mà ta có f (-1) = 3 nên suy ra

4.(-1)3 + 2.(-1) + C = 3

Û C - 6 = 3 Û C = 9

Vậy ta có f (x) = 4x3 + 2x + 9

Lại có F (x) là nguyên hàm của f (x) nên suy ra

Fx=fxdx=4x3+2x+9dx

= x4 + x2 + 9x + C

Mà F (-2) = 2 nên suy ra

(-2)4 + (-2)2 + 9.(-2) + C = 2

Û C + 2 = 2 Û C = 0

Vậy ta có F (x) = x4 + x2 + 9x

Khi đó, F (1) = 14 + 12 + 9.1 = 11.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247