Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số \(y = {x^3} + \left( {m + 2} \right){x^2} + \left( {{m^2} - m -

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số \(y = {x^3} + \left( {m + 2} \right){x^2} + \left( {{m^2} - m - 3} \right)x - {m^2}\) cắt trục hoành tại ba điểm phân biệt?

A. 3

B. 2

C. 4

D. 1

* Đáp án

A

* Hướng dẫn giải

Xét phương trình hoành độ giao điểm:

\(\begin{array}{l}
{x^3} + \left( {m + 2} \right){x^2} + \left( {{m^2} - m - 3} \right)x - {m^2} = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} + \left( {m + 3} \right)x + {m^2}} \right) = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
x - 1 = 0\\
{x^2} + \left( {m + 3} \right)x + {m^2} = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
{x^2} + \left( {m + 3} \right)x + {m^2} = 0
\end{array} \right.
\end{array}\) 

Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình \({x^2} + \left( {m + 3} \right)x + {m^2} = 0\) phải có hai nghiệm phân biệt khác 1

\( \Leftrightarrow \left\{ \begin{array}{l}
\Delta  = {\left( {m + 3} \right)^2} - 4{m^2} > 0\\
{1^2} + \left( {m + 3} \right).1 + {m^2} \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
 - 3{m^2} + 6m + 9 > 0\\
{m^2} + m + 4 \ne 0{\rm{ }}\left( {luon{\rm{ }}dung} \right)
\end{array} \right. \Leftrightarrow  - 1 < m < 3\)

Do đó với -1 < m < 3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt.

Mà \(m \in Z\) nên \(m \in \left\{ {0;1;2} \right\}\).

Copyright © 2021 HOCTAP247