Cho số phức z = a + bi (a, b Î ℝ, a > 0) thỏa mãn |z - 1 + 2i| = 5 và z.z gạch đầu = 10

Câu hỏi :

Cho số phức z = a + bi (a, b Î ℝ, a > 0) thỏa mãn |z - 1 + 2i| = 5  z.z¯=10. Khi đó P = a - b có giá trị bằng


A. P = 4;



B. P = -4;


C. P = -2;

D. P = 2.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Ta có:

+) z.z¯=10

Þ a2 + b2 = 10 (1)

+) |z - 1 + 2i| = 5

Þ (a - 1)2 + (b + 2)2 = 25

Û a2 - 2a + 1 + b2 + 4b + 4 = 25

Û (a2 + b2) - 2a + 4b = 20

Û 10 - 2a + 4b = 20

Û - 2a + 4b = 10

Û - a + 2b = 5

Û a = 2b - 5 (2)

Thay (2) vào (1) ta thấy phương trình (1) trở thành

Û (2b - 5)2 + b2 = 10

Û 4b2 - 20b + 25 + b2 = 10

Û 5b2 - 20b + 15 = 0

Û b2 - 4b + 3 = 0

Û b2 - 3b - b + 3 = 0

Û b(b - 3) - (b - 3) = 0

Û (b - 1)(b - 3) = 0

b=1b=3

+) Với b = 1 Þ a = 2.1 - 5 = -3 (Loại vì a > 0)

+) Với b = 3 Þ a = 2.3 - 5 = 1 (Thỏa mãn)

Vậy suy ra: a = 1, b = 3

Khi đó P = a - b = 1 - 3 = -2.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247