Cho hàm số f (x) có đạo hàm liên tục trên ℝ và f (x^3 - 3x^2 + 3x) = 2x + 2.

Câu hỏi :

Cho hàm số f (x) có đạo hàm liên tục trên ℝ và f (x3 - 3x2 + 3x) = 2x + 2. Khi đó 19x.f'xdx  bằng


A. 68;


B. 683;

C. 1363;


D. 12.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Xét 19x.f'xdx

Đặt u=xdu=dx            dv=f'xdxv=fx

Nên ta có 19x.f'xdx=xfx1919fxdx  (1) 

+) f (x3 - 3x2 + 3x) = 2x + 2

Xét x = 1 Þ f (1) = 2.1 + 2 = 4 (2)

Xét x = 3 Þ f (9) = 2.3 + 2 = 8 (3)

+) 133x26x+3fx33x2+3xdx=133x26x+32x+2dx

Đặt u = x3 - 3x2 + 3x Þ du = (3x2 - 6x + 3) dx

Đổi cận:

+ Xét x = 1 Þ u = 1

+ Xét x = 3 Þ u = 9

Nên suy ra

19fudu=136x36x26x+6dx

=3x422x33x2+6x13

=117252=56 (4)

Lần lượt thay (2), (3), (4) vào (1) ta được

19x.f'xdx=xfx1919fxdx

= 9.8 - 1.4 - 56 = 12.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247