Biết phương trình z^2 − 2z + 3 = 0 có hai nghiệm phức z1, z2. Khẳng định nào sau đây sai?

Câu hỏi :

Biết phương trình z2 − 2z + 3 = 0 có hai nghiệm phức z1, z2. Khẳng định nào sau đây sai?


A. z1 + z2 là số thực;



B. z1 – z2 là số thực;


C. z12 + z22 là số thực;

D. z1.z2 là số thực.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Phương trình z2 – 2z + 3 = 0 có hai nghiệm là:

z1 = 1 + 2i và z2 = 1 − 2i

Ta có:

z1 + z2 = 1 + 2i + 1 – 2i

Þ z1 + z2 = 2 là một số thực.

Do đó A là đúng.

z1 – z2 = 1 + 2i – (1 – 2i)

Þ z1 – z2 = 22i  là một số ảo

Nên z1 – z2 là số thực là sai.

Do đó B là sai.

Vậy ta chọn phương án B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247