Giả sử F(x) = x^2 là một nguyên hàm của f(x)sin^2x và G(x) là một nguyên hàm của

Câu hỏi :

Giả sử F(x) = x2 là một nguyên hàm của f(x)sin2x và G(x) là một nguyên hàm của f(x)cos2x trên khoảng (0; π). Biết rằng Gπ2 = 0, Gπ4 = aπ + bπ2 + cln2, với a, b, c là các số hữu tỉ. Tổng a + b + c bằng

A. 2716;

B. 2116;

C. 516;

D. 1116.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

F(x) = x2 là nguyên hàm của f(x)sin2x

Nên F'(x) = f(x)sin2x

Û 2x = f(x)sin2x Û f(x) = 2xsin2x 

G(x) là nguyên hàm của f(x)cos2x

Do đó G(x) = f(x)cos2xdx = 2xsin2x.cos2xdx 

= 2x(1sin2x)sin2xdx = 2xsin2xdx2xdx 

= 2xd(cotx) − x2

= −2xcotx + 2cotx.dx − x2

= −2xcotx – x2 + 2cotx.dx 

= −2xcotx – x2 + 2ln|sinx| + C

Theo giả thiết:

Gπ2 = 0

2.π2.cotπ2π22+2lnsinπ2+C=0

π.0π42+2ln1+C=0

Û π24 + C = 0 Û C = π24 

Nên G(x) = −2xcotx – x2 + 2ln|sinx| + π24 

Gπ4=2.π4.cotπ4π42+2lnsinπ4+π24 

= π2π216+2ln12+π24 

= π2+3π2162ln2 

= π2+3π216ln2 

Gπ4 = aπ + bπ2 + cln2

Nên ta có: a = 12; b = 316; c = −1

Vậy a + b + c = 12 + 316 − 1 = 2116.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247