Xét các số phức z, w thỏa mãn |z| = 2 và |iw – 2 + 5i| = 1. Giá trị nhỏ nhất của |z^2 – wz – 4 | bằng

Câu hỏi :

Xét các số phức z, w thỏa mãn |z| = 2 và |iw – 2 + 5i| = 1. Giá trị nhỏ nhất của |z2 – wz – 4 | bằng


A. 4;



B. 2293; 


C. 8;

D. 2295. 

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Đặt z = a + bi , w = c + di (a, b, c, d ℝ ).

Þ iw – 2 + 5i = i(c + di) – 2 + 5i

= ci + di2 – 2 + 5i

= (c + 5)i – d – 2

Khi đó ta có:

• |z| = a2+b2=2 Þ a2 + b2 = 4

Þ a, b [–2; 2]

• |iw – 2 + 5i| = c+52+d22=1

Þ (c + 5)2 + (d + 2)2 = 1

Þ c [–6; –4] và d [–3; –1].

Ta có:

T = |z2 wz – 4|

= |z2 – wz − |z|2|

= |z2 – wz – z . z¯|

= |z| . |z − z¯ − w|

= 2|z − z¯ − w|

Þ T = 2|2bi – (c + di)|

= 2|– c + (2b – d)i|

= 2(2bd)2+c2 ≥ 2c2 = 2|c| ≥ 2.4 = 8

(do c [−6; −4] nên |c| ≥ 4)

Dấu “=” xảy ra khi và chỉ khi : c=42bd=0(c+5)2+(d+2)2=1  Þ c=4d=2b=1 

Vậy |z2 – wz – 4| có giá trị nhỏ nhất bằng 8.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247