Có bao nhiêu giá trị nguyên của tham số m để phương trình z^2 – 2mz + 6m – 5 = 0 có hai nghiệm

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m để phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn |z1| = |z2|?


A. 4;



B. 6;


C. 3;

D. 5.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2

Û D' = (m)2 – 1.(6m – 5) < 0

 Û m2 – 6m + 5 < 0

Û 1 < m < 5.

Khi đó hai nghiệm phức của phương trình là hai số phức liên hợp của nhau nên ta luôn có |z1| = |z2|

Mà m

Þ m = {2; 3; 4}

Vậy có 3 giá trị m thỏa mãn.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247