Có bao nhiêu số phức z thỏa mãn |z – 1|2 + |z −z gạch |i + (z +z gạch )^i2023 = 1?

Câu hỏi :

Có bao nhiêu số phức z thỏa mãn |z – 1|2 + |z − z¯|i + (z + z¯)i2023 = 1?


A. 2;



B. 1;


C. 3;

D. 4.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Gọi z = a + bi (a, b ℝ)

Þ z¯ = a – bi

Ta có:

z – 1 = a – 1 + bi

Þ |z – 1|2 = (a – 1)2 + b2.

z − z¯ = 2bi

Þ zz¯=2b2=2b

Þ zz¯i=2bi

z + z¯ = 2a

i2023 = i21011. i = −i       

Þ (z + z¯)i2023 = –2ai

Do đó: |z – 1|2 + |z − z¯|i + (z + z¯)2023 = 1

Û (a – 1)2 + b2 + 2|b|i – 2ai = 1

Û (a – 1)2 + b2 + (2|b| – 2a)i = 1

Û (a1)2+b2=12b2a=0 Û  a22a+b2=0a=b

a22a+a2=0a=b

 

2a22a=0a=b 2aa1=0a=b

Û a=0a=1a=b 

• Với a = 0 ta có b = 0 khi đó ta có z = 0.

• Với a = 1 ta có |b| = 1 Þ b = 1 hoặc b = –1

Khi đó ta có z = 1 + i; z = 1 – i.

Vậy có 3 số phức z thỏa mãn yêu cầu bài toán.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247