Có bao nhiêu số phức z thỏa mãn |z – 1|2 + |z − |i + (z + )i2023 = 1?
A. 2;
B. 1;
C. 3;
Đáp án đúng là: C
Gọi z = a + bi (a, b ∈ ℝ)
Þ = a – bi
Ta có:
• z – 1 = a – 1 + bi
Þ |z – 1|2 = (a – 1)2 + b2.
• z − = 2bi
Þ
Þ
• z + = 2a
• i2023 = . i = −i
Þ (z + )i2023 = –2ai
Do đó: |z – 1|2 + |z − |i + (z + )2023 = 1
Û (a – 1)2 + b2 + 2|b|i – 2ai = 1
Û (a – 1)2 + b2 + (2|b| – 2a)i = 1
Û Û
Û
• Với a = 0 ta có b = 0 khi đó ta có z = 0.
• Với a = 1 ta có |b| = 1 Þ b = 1 hoặc b = –1
Khi đó ta có z = 1 + i; z = 1 – i.
Vậy có 3 số phức z thỏa mãn yêu cầu bài toán.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247