Trong không gian Oxyz, cho ba đường thẳng d: ∆1: và ∆2: . Đường thẳng ∆ vuông góc với d đồng thời cắt ∆1, ∆2 lần lượt tại H, K sao cho HK nhỏ nhất. Biết rằng ∆ có một vectơ chỉ phương (h; k; 1). Giá trị h – k bằng
A. 0;
B. 4;
C. 6;
Đáp án đúng là: A
Giả sử H(3 + 2t; t; 1 + t) ∈ ∆1 và K(1 + t'; 2 + 2t'; t') ∈ ∆2
Ta có: = (t' – 2t – 2; 2t' – t + 2; t' – t – 1)
Đường thẳng d: có vectơ chỉ phương là = (1; 1; −2)
Vì d ^ ∆ nên ^ Þ . = 0
Û t' – 2t – 2 + 2t' – t + 2 – 2(t' – t – 1) = 0
Û t' – t + 2 = 0 Û t' = t – 2
Nên = (−t – 4; t – 2; −3)
Þ HK2 = (t + 4)2 + (t – 2)2 + 9
Û HK2 = 2t2 + 4t + 29 = 2(t + 1)2 + 27 ≥ 27 ∀ t
Þ HKmin = Û t = −1 .
Khi đó = (−3; −3; −3) song song với vectơ (1; 1; 1)
Suy ra đường thẳng ∆ nhận (1; 1; 1) là một vectơ chỉ phương nên h = k = 1
Vậy h – k = 1 – 1 = 0
Vậy h – k = 0.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247