A. 3.000.000 đồng.
B. 3.270.000 đồng.
C. 5.790.000 đồng.
D. 6.060.000 đồng.
B
Vì ABCD là hình vuông cạnh 4 nên \(BD = \sqrt {B{C^2} + C{D^2}} = 4\sqrt 2 \Rightarrow OB = 2\sqrt 2 \) và A(-2;2); B(2;2).
Phương trình đường tròn tâm O bán kính \(r = 2\sqrt 2 \) là \({x^2} + {y^2} = 8 \Rightarrow y = \sqrt {8 - {x^2}} \)
Parabol đi qua hai điểm \(A\left( { - 2;2} \right),B\left( {2;2} \right)\) và có đỉnh O(0;0;0) có dạng \(y=ax^2\) (\(a \ne 0\))
Khi đó \(2 = a{.2^2} \Rightarrow a = \frac{1}{2} \Rightarrow y = \frac{1}{2}{x^2}\) (P)
Từ đồ thị ta có \(S_1\) là giới hạn của hai đồ thị hàm số \(y = \sqrt {8 - {x^2}} \) và \(y = \frac{1}{2}{x^2}\) và hai đường thẳng x = - 2, x = 2.
Nên ta có \({S_1} = \int\limits_{ - 2}^2 {\left( {\sqrt {8 - {x^2}} - \frac{1}{2}{x^2}} \right)dx} = \int\limits_{ - 2}^2 {\sqrt {8 - {x^2}} dx} - \left. {\frac{1}{6}{x^3}} \right|_{ - 2}^2 = I - \frac{8}{3}\)
Xét \(I = \int\limits_{ - 2}^2 {\sqrt {8 - {x^2}} dx} \), đặt \(x = 2\sqrt 2 \sin t \Rightarrow dx = 2\sqrt 2 \cos tdt\)
Đổi biến số \(x = - 2 \Rightarrow t = - \frac{\pi }{4};x = 2 \Rightarrow t = \frac{\pi }{4}\)
Từ đó \(I = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\sqrt {8 - 8{{\sin }^2}t} .2\sqrt 2 \cos tdt} = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {8{{\cos }^2}tdt} = 4\int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\left( {1 + \cos 2t} \right)dt} = 4t + \left. {2\sin 2t} \right|_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} = 2\pi + 4\)
Nên \({S_1} = I - \frac{8}{3} = 2\pi + 4 - \frac{8}{3} = 2\pi + \frac{4}{3}\)
Lại thấy \({S_1} = {S_2};{S_3} = {S_4}\) (vì hai parabol đối xứng nhau qua đỉnh O), diện tích cả bốn hoa là \(S = \pi {r^2} = \pi {\left( {2\sqrt 2 } \right)^2} = 8\pi \).
Từ đó diện tích trồng hoa là \({S_1} + {S_2} = 2{S_1} = 4\pi + \frac{8}{3}\left( {{m^2}} \right)\)
Diện tích trồng cỏ là \({S_3} + {S_4} = S - \left( {{S_1} + {S_2}} \right) = 4\pi - \frac{8}{3}\left( {{m^2}} \right)\)
Nên tổng số tiền trồng bồn hoa là \(\left( {4\pi + \frac{8}{3}} \right).150000 + \left( {4\pi - \frac{8}{3}} \right).100000 \approx 3274926\) đồng.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247