A. \(\frac{{{a^3}}}{6}\)
B. \(\frac{{\sqrt 3 {a^3}}}{6}\)
C. \(\frac{{{a^3}}}{3}\)
D. \(\frac{{\sqrt 3 {a^3}}}{3}\)
D
Gọi I là hình chiếu của A lên BH. Khi đó S đối xứng với A qua BH hay S đối xứng với A qua I.
Chia khối đa diện ABCSFH thành hai khối chóp A.BCHF và S.BCHF thì ta có \({V_{ABCHFS}} = {V_{A.BCHF}} + {V_{S.BCHF}}\)
Lại có SI = AI và \(SA \cap \left( {BCHF} \right)\) tại I nên \(d\left( {A;\left( {BCHF} \right)} \right) = d\left( {S,\left( {BCHF} \right)} \right)\).
Suy ra \({V_{A.BCHF}} = {V_{S.BCHF}} \Rightarrow {V_{ABCHFS}} = 2{V_{A.BCHF}}\)
Dễ thấy \({V_{A.BCHF}} = {V_{ABC.EFH}} - {V_{A.EFH}} = {V_{ABC.EFH}} - \frac{1}{3}{V_{ABC.EFH}} = \frac{2}{3}{V_{ABC.EFH}}\)
Mà \({V_{ABC.EFH}} = AE.{S_{ABC}} = a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{4}\) nên
\(\begin{array}{l}
{V_{A.BCHF}} = \frac{2}{3}{V_{ABC.EFH}} = \frac{2}{3}.\frac{{{a^3}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{6}\\
\Rightarrow {V_{ABCHFS}} = 2{V_{A.BCHF}} = 2.\frac{{{a^3}\sqrt 3 }}{6} = \frac{{{a^3}\sqrt 3 }}{3}
\end{array}\)
Vậy \({V_{ABCHFS}} = \frac{{{a^3}\sqrt 3 }}{3}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247