Cho hàm số f (x) liên tục trên ℝ thỏa mãn f(x) = x^2 + tích phân từ 1 đến 2 của xf(x)dx.

Câu hỏi :

Cho hàm số f (x) liên tục trên ℝ thỏa mãn fx=x2+12xfxdx . Giá trị của 02xfxdx  bằng


A. -11;



B. 11;


C. -7;

D. 19.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

fx=x2+12xfxdx

 xfx=x3+x12xfxdx (1) (Nhân hai vế của phương trình trên với x)

Đặt 12xfxdx=t  (Với t là một hằng số)

Phương trình (1) trở thành

Û xf (x) = x3 + xt

Lấy tích phân 2 vế của phương trình trên trên khoảng (1; 2) ta có

12xfxdx=12x3dx+12xtdx

t=x4412+tx2212

t=414+2tt2

t2+154=0t=152

xf (x) = x3 + xt

Þ f(x) = x2 + t

Þ fx=x2152

02xfxdx=02xx2152dx

=02x3152xdx=x4415x2402

=24415.224=11.

Vậy ta chọn phương án A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247