Cho hai số phức z, w thỏa mãn |w - i| = 2 và z + 2 = iw. Gọi M, m lần lượt là giá trị lớn nhất

Câu hỏi :

Cho hai số phức z, w thỏa mãn |w - i| = 2 và z + 2 = iw. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z|. Giá trị M + m bằng


A. 4;



B. 2;


C. 5;

D. 6.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Gọi z = x + yi

Ta có:

z + 2 = iw

Û z + 2 - i2 = iw - i2

Û z + 2 + 1 = i(w - i)

Û z + 3 = i(w - i)

Mô-đun hai vế ta được

|z + 3| = |i(w - i)| = |i|.|w - i| = 2

Þ |x + yi + 3| = 2

Þ |x + 3 + yi| = 2

Þ (x + 3)2 + y2 = 4

Gọi M(x; y) là điểm biểu diễn của số phức z thì tập hợp điểm M đường tròn tâm I(-3; 0) và bán kính R = 2.

Media VietJack

Ta có: |z| = OM

Vậy OM đạt giá trị nhỏ nhất khi M º M1 và OM đạt giá trị lớn nhất khi M º M2

Khi đó:

M = OMmax = OM2 = 5

m = OMmin = OM1 = 1

Suy ra M + m = 5 + 1 = 6.

Vậy ta chọn phương án D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247