A. \(120^0\)
B. \(150^0\)
C. \(135^0\)
D. \(60^0\)
A
Gắn hệ trục tọa độ Oxyz như hình vẽ với \(A \in Ox;B \in Oy;C \in Oz\) và \(OA = OB = OC = a.\)
Khi đó \(A\left( {a;0;0} \right),B\left( {0;a;0} \right),C\left( {0;0;a} \right) \Rightarrow M\left( {\frac{a}{2};\frac{a}{2};0} \right)\)
Ta có \(\overrightarrow {OM} = \left( {\frac{a}{2};\frac{a}{2};0} \right) \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{4} + 0} = \frac{{a\sqrt 2 }}{2}\) và \(\overrightarrow {BC} = \left( {0; - a;a} \right) \Rightarrow \left| {\overrightarrow {BC} } \right| = \sqrt {a{}^2 + a{}^2} = a\sqrt 2 \)
Từ đó \(\cos \left( {\overrightarrow {BC} ;\overrightarrow {OM} } \right) = \frac{{\overrightarrow {BC} .\overrightarrow {OM} }}{{\left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {OM} } \right|}} = \frac{{\frac{a}{2}.0 + \frac{a}{2}.( - a) + 0.a}}{{a\sqrt 2 .\frac{{a\sqrt 2 }}{2}}} = \frac{{ - \frac{{{a^2}}}{2}}}{{{a^2}}} = - \frac{1}{2}.\)
Nên góc giữa hai véc tơ \(\overrightarrow {BC} ;\overrightarrow {OM} \) là \(120^0\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247